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ESTIMATES IN THE KOLMOGOROV THEOREM 
ON CONSERVATION OF CONDITIONALLY PERIODIC MOTIONS* 

A.I. NEISHTADT 

A Hamiltonian system which differs from the integrable system by a small perturba- 
tion is considered. According to the Kolmogorov theorem /l-33/ the majority of in- 
variant tori present in the unperturbed system do not decompose under a perturba- 
tion, and 'few of them become deformed. The following estimates are obtained below: 
for the perturbation E under the usual conditions of nondegeneracy, the measure of 
the set of the decomposing tori and the deformation of the remaining tori are both 
estimate from above by the quantities of the order of I/i, and these estimates can- 
not be improved. The proof follows that /2,3/ of the Kolmogorov theorem with the 
intermediate estimates obtained more accurately. Similar estimates were obtained 
in the Moser theorem concerning the invariant curves of the mapping of a plane onto 
itself in /4/, and for the mapping in the multidimensional case, in /5/. 

The conservation of the majority of the invariant tori was proved in /3/ also for the 
degenerate cases, including that of the permanent adiabatic invariance of the action variable 
when the Hamiltonian function varies slowly. Below it will be shown that in this case the 
measure of the disintegrating tori is estimate from above by a quantity of the order of 
exp (-c/s) where E>O determines the rate of change of the Hamiltonian function and c>O is 
a constant. The deformation of the remaining tori is estimate by a quantity of the order of 
E in such a manner, that the action variable remains always in the e-neighborhood of its 

initial value. 

1. Formulation of the conditions and result. We shall consider a Hamiltonian 
SystemwithHamiltonian function 

H (Z, cp, s) = Ho (Z) -F eHI (I, (P, E) (1.1) 

where Zand cp are n-dimensional vectors, E is a small positive parameter and the function H, 
is 2n -periodic in 'p. We assume that the function H, bounded region G and the positive con- 
stants p, a, ~~,ti,(4,@,,@~, q, C, c, D satisfy the following conditions. 

lo. When ReZ~G,~ImZI<p,Recp~T*,IImcpI< o,O<c <co, the function His analytic 
and the inequalities / a2H,,iaZ2 ) < 0, I H, I < C, 1 aH,iaZ I < c hold. When I and 'p are real, H 
is real. (Here Z'" denotes the n-dimensional torus and 1 . I is the modulus of a complex 
number 

26 
norm of a vector, or a matrix). 

. One of the following two conditions holds: 

Condition of nondegeneracy. The mapping A defined by the formula o = A (I)= aHofaz, 
is a diffeomorphism of its domain of definition onto its image, and satisfies the inequalities 

6 I dZ I -< I dA I < @ I dz 1 (1.2) 

Condition of isoenergetic nondegeneracy. The surfaces of the level H,= COnStare 
nonsingular: 13,< 1 afzoiaz I< 6,. Restricting the mapping A, defined by the formula A, (Z)= 
@Ho/ aZ)l 1 aHDial I to every such surface, represents a diffeomorphism of its domain of defini- 
tion onto its image. The estimates (1.2) hold for dZ satisfying the relation (aHo/ az) dZ = 

0. When ZEG, 
3O. 

then the inequality IHo I <q holds. 
The inequality mes (G\G- 6) < D6. where (G- 6) is a set of points whose closed 6 

-neighborhoods belong to G, holds for any S>O. In what follows, all positive quantities 
depending only on the constants n,p, U,~0,6,0,6~, 0,,q,C,c, D introduced above, shall be called 
constant and denoted by Ci, Ci and ai. The appearance of Ci in the text in some relationship 
is equivalent to the assertion that a constant Ci satisfying this relation exists (the same 
applies to the remaining constants). 
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Theorem 1. For any e and x satisfying the conditions C,~/;<X< Ca-', the set F = G X 
T* can be written in the form of union of two sets, F, and F,', with the following proper- 

ties. 
1:. mes F,'< C, 1/K 

(1.1): - 
the set F, is a union of n-dimensional tori TE of the system with the Hamiltonian 

The variable % ordering the tori is an n-dimensional vector assuming the values from 
some subset of G. The torus TE is defined by the following parametric equations: 

Z=%+fr(Q), c~=Q+gc(Q), QET" 
The functions fe and gE are analytic on Q and satisfy the inequalities 1 fo 1 < C&/X, 1 & I< 
C,&?. 

3O. The motion on the torus Tt is conditionally periodic and defined by the formula Q'= 

a07 and the frequency vector at satisfies the inequalities 1 (q,k) ) >x Ik I-" for all enum- 
erable vectors k#O. The theorem is proved in Sect.2. 

Setting in the theorem Ix= C,f/e, we obtain the following result. 

Corollary 1. When 0 < E < Ce-', we can write the set F in the form F = U IJ U'where 

mes v'<C,v/r and the set Uis the union of the n-dimensional invariant tori TE along every 
one of which 1 I - E I < C,J& for some EER". 

Thus the measure of the set of tori decomposing under a perturbation is of the order 

0 (VZ). Every invariant torus belonging to the set u differs from a certain invariant torus 
of the unperturbed problem Z = % = con& by a deformation of the order O(fi). The tori belong- 
ing to U deform differently. According to Theorem 1 the measure of the set consistingofthe 
invariant tori deformed by more than e/x is O(x). Examples of a pendulum in a weak grarity 
field (H = lla Z2- ECOS cp) show that the above estimates cannot be improved. 

Note. Analogous estimates were obtained in /5/ for the symplectic, sufficiently smooth 
mapping close to integrable. Using the results of /5/, we can reduce the Hamiltonian system 
to a symplectic mapping and thus obtain the estimates of the corollary 1 for the case of iso- 
energetic nondegeneracy (for n= 2 the estimates can be obtained using the results of /4/). 
Moreover, the results imply that the invariant tori of the perturbed system can be includedin 
the smooth family of tori. 

Let us now consider the case of two degrees of freedom, assuming that the condition of 
isoenergetic nondegeneracy holds. In this case the two-dimensional invariant tori divide the 
three-dimensional energy level H = con&, and the conservation of the majority of tori implies 
that the values of the variables Z along the motion will always remain close to their initial 
values /2/, whatever they are. Theorem 1 implies that in this case the sizes of the gaps be- 
tween the tori and the deformation of each torus are of the order 0 (V-3 I and this leads us 
to the following assertion. 

Corollary 2. Let a system with two degrees of freedom be isoenergetically nondegener- 
atedandletthe conditions of Theorem 1 hold. Then the inequality 

I z (t) - I, I < c,,V~, --00 < t c 00 
holds along the motion for 0< E <CD-l and all initial data (I,, (P&E (G - C,,vi) X T2 

Example 1. /3/. We consider a plane, circular, bounded three-body problem. Let the 
sun be of mass 1, and Jupiter of mass E. In accordance with Corollary 2 the oscillations of 
the semiaxis and the excentricity of the asteroid are of the order 0(I/e) (provided that the 
unperturbed orbit of the asteroid does not intersect the orbit of Jupiter). 

Example 2. /2/. We consider the rotation of a heavy rigid body about a fixed point. 
Let 8 be the ratio of the difference between the largest and the smallest value of the poten- 
tial energy of the body to its kinetic energy at the initial instant.' Then, during the whole 
motion, the relative oscillations in the value of the kinetic moment vector modulus and the 
oscillations in the value of the angle between this vector and the vertical will be of the 
order O(l/E) (with the initial data at a distance from the separatrices of the Euler-Poinsot 
problem ). 

2. Proof of Theorem 1. The proof is carried out, for definiteness, under the assump- 
tion that the condition of nondegeneracy given in Sect.1, holds. The construction follows, on 
the whole, that given in /2,3/, with the intermediate estimates changed. It is assumed that 
the norm 1. ( is given by the formula I X 1 = maxi,j I Zi,, I with X = (51.1). 
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2.1. Auxilliary assertions. LeIllIIla 1. The following sequences appear in the con- 
ditions of Theorem 1 when O<E<EO,X>C&: the sequence of positive numbers b,, yB, M,,N,, 
the sequence of imbedded regions V(s) in the space I, and VW) in the space (130 I the sequ- 
ence of canonical diffeomorphisms 
and analitical functions H(") =&@(I) + 

B@) map&ing WC*) onto I@-') ,.the sequence of determined 

I (I, cp) when (Z,(p)= VV@) and the sequence of diffeomo- 
rphismA(@ mapping V(a) onto the space of frequenciesm.Thesesequences have the following proper- 
ties: lo. The numerical sequences are constructed as follows: 

2O. The regions P") and Vi'@) are constructed as follows: 

P='{Z:R~ZEG, ~ImZ~<,p},WcO,={Z,~:Z~V(O~, ~Imq~<a} 

3O. The canonical analytic diffeomorphism P): (I@), (p@)) + (I(“‘), (PC’-‘)) maps JV@) onto JjB-1) 
so that the following inequalities hold: 

For the case s= 1 the second inequality can be sharpened 

I $1) - cp(O) I < gg) 

The diffeomorphism B(a) transformsrealpoints into real points. 

4O. The Hamiltonian H(") is given by the formulas 

H(O) (I, q) = H (I,, cp), HcS) (I, (p) = H (Zl(‘)~fP)o . ..oB@j (I, cp)), s > I 

and satisfies the inequality 

5O. 
IH,c”)l< M.. 

The mapping A(*)gi by the formula 

A(") (I) = a@ (Z)BZ 

is a diffeomorphism of V(“) onto A(“)(V(“)) and satisfies the inequalities 

l/,6 IdZ IQ IdA I<,<@ IdZ I 
The sequences of direct A(‘) and inverse A@)-’ mapping satisfy the inequalities 

A@) (V@)) c A(*‘) (Y’s’) --“/&3,, I A’s’ _ A@-‘) , < M+1 
B,’ IA 

Lv’ 4M6-1 _ A@-‘)-’ 1 <as, 

The proof of Lemma 1 follows directly from Lemmas 2 and 3 given below. 

Lemma 2. Let the region VC C”, the function Q, (Z,(p)= (Do(Z) + (&(Z,q) and the number M 

have the following properties. 

lo. Function @is analytic in the region 

W = {I, fp: Z E V, 1 Im 'p I< ul}, Vpa< O1 Q 0 
and satisfies the estimate I'&l<M. The function QD, and Ql are real in Re W. 

2O. The mapping Agiven by the formula 

A (I) = SD, (Z)laZ 

is a diffeomorphism of Vonto A (V) and satisfies the inequalities 



The Kolmogorov theorem on conservation of periodic motions 769 

l/,6 1 dI I< 1 dA I < 28 I dl I 

Then for any positive numbers x,s,p,y, N connected by the conditions 

(2.1) 

the following relations hold. 
1) We define the regions v,V’ and W'by the relations 

V = {I: I E V, 1 (k, i%D,,/iU) I > x Ikl-“, k E Z”, 1 < Ikl <N} 

V’ = V - f3, w’ = {I, cp: Z E V’, 1 Im cp I< c1 - y) 

A canonical analytic diffeomorphism .!l:J, $-+Z,fp exists, mapping W’ onto Wand satisfying the 

inequalities 

If we also put 1 XD/SZ )< M, then 

The diffeomorphism B transforms real points into real points. 
2) We write the function 0 (Z,cp) = @(B(Z,cp)) in the form 

@' (1, (P) = %' (0 + @I' (Z,(P) 

~~(z)=~,(I)+(2n)-n~...~~l(Z,~)d~, @l’=@‘--Ct, 
0 cl 

The following inequality holds: 

3) The mapping A' defined by the formula 

A’ (I) = a@‘, (Z)/aZ 

is a diffeomorphism of V'onto A’(V’) and satisfies the inequalities 

A’(V’) CA (v) -‘/&?, IA’-Aj<+ ]A’-‘-A-ll<$ [dA’-dA/+[dZI 

Proof. Consider the Fourier series for the function DD, 

and the canonical change of variables Z,cp- J,$ defines by the formulas 

ac v. CP) Z=J+- 
acp 

ifk !I) exp ci 6% 9)) 

lSlW3 
(k, am0 (ZvZ) 

(2.31 

(2.4) 

where the number Nremains, for the time being, arbitrary. Following /3/, we prove the follow- 
ing assertion. Let the positive numbers x,&v satisfy the first inequality of (2.1). Then 
the formulas (2.4) determine for (J,~)Ew' the canonical analytic diffeomorphism B:W’-wW 

satisfying the inequalities (2.2). 
Let us perform a change of variables in the Hamiltonian system in question according to 

the formulas (2.4). The change in the new variables will be described by the Hamiltonian 
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(in the ri .ght-hand part of (2.5) m must be expressed in terms of v according to (2.4) ). By 

virtue of the definition of G (2.4) the term in the first square brackets in equal to &(J)-1. 
RN (J, 9). Let us write 

Q' (J) = uJO (J) + 6 (J), Q,' (J>$) = CD' V,$) - Q,' (J) 

Estimating the right-hand side of (2.5) we obtain, as in /3/, 

(here we utilize the Cauchy estimate for a@,,/aJ and the estimate for the last term of the 
Fourier series given in /3/). 

Choosing q= 8qa,N,p according to (2.1), we obtain the inequality (2.3). The definition 
of A’ and the Cauchy inequality yield, for IE V’, 

) A (I) - A’ (I) 1 = 1 a5,iar 1 < LWp- 
1 dA - dA’ 1 = 1 (8z&+Iz) dI 1 < 2nMp-‘\ dl 1 

The remaining inequalities of Lemma 2 follow from the "Lemma on the frequency variation" /3/. 

Lemma 3. Let us consider the sequence M, of Lemma 1. When x> 2c,Jf/e, the following 
inequality holds: 

Proof. We define the number a,>0 by the condition that the inequality 1 In z In< z-"2 
holds for O<Z<Q,-1. We shall show that a,>0 can be chosen such, that when x> a,+&, the 
inequality 

C&f*%-1 < a,-' (2.6) 

holds. When x> (a,~&)"~ , the inequality (2.6) holds for i= 0. Let us assume that it also 
holds for O<i<s-i. Using the definition of ~~ and vi we obtain, for l< i<s, 

and this yields. 

Since MO= Ce, we have 

(2.7) 

It is now clear that for a sufficiently large a, and x>a,v/e'the inequality (2.6) holds also 
for i=s. By induction we now find that for x>arv'e the inequalities (2.6) and (2.7) hold 
for all i,s and the inequality of Lemma 3 follows from (2.7). 

2.2. Derivation of Theorem 1 from Lemmas 1 and 3. Let 

Cl 1/r< x < c-2, Cl = max(cl, 214, C* = max(26-'p-l, C&F) 

We consider the objects fl,,y., M,, N., V@), IV@), B@), H(s, A@) defined in Lemma 1, and put 

V'")=&V"', rn'"'=&w'" 

Following /3/ we show that the sequence of canonical diffeomorphisms SC") = BQ) 0 B(2) 0 . . . o B(i) 
converges uniformly on the set WC-) to some continuous 1:l mapping SC"), the sequence of the 
Hamiltonians H(')(I,rp) converges to the Hamiltonian H (“)(I) independent of the phase 'P, and 
the sequence of diffeomorphisms A(‘) converges on Ycm) to a continuous 1:l mapping A(“). We 

can show, as in /3/, that mes (F\ WC"))< C,x. Let us write F, = Re SC”) (JVm’), F,’ = F \ F,. 
Since all Sci) preserve the measure, we have 

mesF,=mesS(m)(W'"))=mes 7 s"'(w"') =mes n W(')=~IZ.W(~) 

mes F,' = mes F \ F, = mesF \ WC-)< Csx 
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(we take the measure of the real component of a set as the measure of this set). 
Further, following /3/ we show that the initial Hamiltonian H determines, in the vari- 

able; %, Q defined by the change of variables (I,cp)= Scm)(%, Q) themotion % = const, Q = A(")(%) 
This means that the set F, consists of the n-dimensional tori of the system with 

&il;onian (1.1). Every such torus can be specified either by the value of %E ReV("),or of 
o = A(=) (5) E A(")(V(")), 1 (k, co) 1 > x 1 k I-“, 1 k 1 # 0, k cz 2”. Finally, from Lemmas 1 and 3 it fol- 

lows that the change (Z,cp) = Srn) (%,Q), 1s analytic in Qand satisfies the inequalities 

Q.E.D. 

3. System with two degrees of freedom in the case of self-degeneracy. 
Consider a Hamiltonian system with the following Hamiltonian function: 

(3.1) 

where E is a small positive parameter and the function His (2n)-periodic in 'p,, and ql. As 
we know /3/, in the general case of a system with two degrees of freedom degenerated once, 
the Hamiltonian is reduced to the form (3.1). We assume that the function H, the positive 
constants p, 0, e,, 6, 0, 6,,C, c, a,, b,, ~1, bl and the rectangular region G = (a,, b,) x (al, b,) are such, 
that when REIEG, 1 ImI j<p, Reg,~ TZ, )Imcp 1 <u, o,< a <se, the function His analytic 
and the following inequalities hold: 

When I and cp are real, His real. 

Theorem 2. Positive constants C1,Cl,..., C, exists such that when 0< e< Cl-‘, the set 
F = (G - C,E) X TZ can be represented as a union of two sets(F,and Fe’) withthe following proper- 
ties: 

lo. 
2O. 

mes F,'< C, exp (- C,Ve). 
The set F, is a union of two-dimensional invariant tori Tg of the system with the 

Hamiltonian (3.1). The variable % enumerating the tori is a two-dimensional vector assuming 
the values from some subset of G. The torus TE is given in the parametric form by the equa- 
tion 

1 = 5 + f~ (Q), cp = Q + a (Oh Q E Ta 
The functions fg and gg are analytic in Qand satisfy the inequalities 

I fE I < CA I 6% I < Ge 
3O. The formula Q = WC gives the motion on the torus TE , and the frequency vector 

ok = (o.,e;,&;atisfies the inequalities I (cog,k) I> (exp(- Cd-‘is)) Jk I-’ for ali enumerable 
vectors 

4O. 
F: 

The following inequality holds along the motion for any initial values (Z(O), ~(O))E 

I I (t) - Z (0) I < C7e, - a < t-c 00 

The equation of motion which can reduced to a system with the Hamiltonian (3.11, appear 
in the problems of permanent adiabatic invariance of the action variables, in the vibrational 
system with one degsee of freedom where the Hamiltonian undergoes a slow periodic variation, 
and in the vibrational system with two degrees of freedom when the Hamiltonian function de- 
pends smoothly on one of the coordinates /3/. Theorem 2 implies that in the above problems, 
under the normal assumption concerning the nondegeneracy /3/, only a part of the phase space 
of the order 0 (exp (-c/e)), c = const may remain unfilled by the invariant tori. The variation 
of the action variables is bounded by a quantity of the order of 8, where E characterizesthe 
smoothness with which the Hamiltonian depends on time or on a specified coordinate. 

Example 3 /3/. We consider the motion of a charged particle in an axially symmetric 
magnetic trap. Let the ratio of the initial radius of the Larmor spiral of the particle to 
the characteristic dimension of the trap be equal to e, and the ratio of this radius to the 
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initial pitch of the spiral be of the order of unity. Then, during the whole motion, the 
relative oscillations of the magnetic moment of the particle are bounded by a quantity of t_he 
order 8. The position of the magnetic mirror may differ fromthatcomputed according to the 
adiabatic theory only by a quantity of the order of the Larmor radius. 

We shall now describe a scheme for proving Theorem 2. The system (3.1) contains one 
rapid variable, namely the angle 'pO. The classical perturbation theory allows us to use an 
almost identical canonical change of variables in order to eliminate the dependence of the 
Hamiltonian on r&,, in any finite order of E. More accurate estimates show /6/ that the de- 
pendence e can be transferred to the exponentially small terms. An analytic canonical vari- 
able change (Z,cp)+(J,$) reduces the Hamiltonian to the form 

H = Ho (Jo) + EH,, (J) + e2% (J,%, 8) + % (J,$, e) (3.2) 

11 - J 1 + IV--II, 1 = 0 (E), J = (Jo, J,), '# = (&,,'$I) 
Q3 = 0 (exp (- cl-lie)), cl = const, c1 > 0 

The system with the Hamiltonian H, + EH,, + e’%D,, can be integrated with help of the canonical 
variable change (J,$)+(J',$'), and 

IJ-J'I+ I$--$'I=O(e), J' = (J,', J1'>), 9' = ($I',%'), J,' = J, (3.3) 

Carrying out this change in (3.2), we reduce the Hamiltonian to the form 

H = H, (J,') + ey', (J', E) + Y, (I', $', E) (3.4) 

Y, = 0 (exp (- cl%)) 

Let us now consider the Hamiltonian (3.4) as a perturbation of the Hamiltonian H, (J'o) + 
EY, (J', e). Formally, the condition of Theorem 1 are not fulfilled in this case since the princ- 
ipal part of the Hamiltonian depends on e, but the statement of the theorem itself remains 
valid and can be proved as in Sect.2. It follows therefore that the phase space of the system 
(3.4) with the exception of an exponentially small measure, is filled with the invariant tori 
differing exponentially little from the tori s' = ConSt. Combining this argument with the in- 
equalities (3.2) and (3.3), we arrive at the proof of Theorem 2. 

The author thanks V.I. Arnol'd for the assessment of this paper. 
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